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Abstract-Transient waves propagating normal to the layerings of a semi·infinite viscoelastic layered
composite are studied. The stress response at a large distance from the boundary due to a unit step stress
applied at the boundary is obtained. If the distance is not large enough, the stress response is oscillatory
due to the dispersive nature of the composite. As the distance increases. the dissipation effect of the
viscoelastic materials becomes pronounced and eventually wipes out completely the oscillatory response.
The transition from the oscillatory response to the lDOaotOnic response is controlled by a parameter 'I' which
contains (a) the impedance mismatch of the composite which contributes to the dispersion. (b) the dissipative
properties of the viscoelastic materials and (c) the distance traveled by the wave.

I. INTRODUCTION
Consider a semi-infinite periodic layered composite as shown in Fig. 1 in which each period 2w
consists of two layers of homogeneous. isotropic, linear viscoelastic materials. The thicknesses
of individual layers are 2hj (i == 1,2) where the subscripts 1 and 2 refer to materials 1 and 2,
respectively. We will consider plane wave propagation in the direction x which is normal to the
layers. For the problem considered here, the surface x =0 need not be the central surface of
the first layer. We will assume, however. that the first layer in which x = 0 is located is occupied
by material 1.

The composite is initially at rest and at time I =0, time-dependent, uniformly-distributed
normal and shear stresses are applied at the surface x = O. Since the problem considered is
linear, the solutions due to the applied normal stress and the shear stress can be treated
separately. The two solutions are mathematically identical. Therefore, we will consider only the
solution due to the applied normal stress at x =O. Moreover, we will assume that the applied normal
stress at x =0is the Heaviside unitstep function in time I, because the solution for a more general
applied normal stress can be obtained by a linear superposition.

The stress response at a position x which is sufficiently large can be obtained by an
asymptotic analysis. When both layers are elastic, the solution can be expressed in terms of an
integral of an Airy function [1,2]. The stress, as a function of time I, oscillates around the
Heaviside step function. When one or both layers are viscoelastic, the asymptotic solution can
be expressed in terms of an error function [1,2]. The stress response is no longer an oscillatory
function of I, but a monotonically increasing function of I which approaches to the unit stress as I
increases.

Since elastic materials are special cases of viscoelastic materials, one might ask how a
monotonic solution becomes an oscillatory solution when the viscoelastic materials become
elastic. Alternately, one might ask what would be the behavior of the asymptotic solution if the
relaxation functions of the viscoelastic materials are nearly step functions. Clearly, when the
position x is not large enough, the dissipative effect of the viscoelastic materials does not have
enough time to prevail and the stress response is essentially governed by the dispersive nature
of the composite which causes the solution to be oscillatory. As x increases, the dissipative
effect, no matter how small, becomes prominent and dampens the despersive mechanism so that
the solution is non-oscillatory. The purpose of this paper is to study the effects of the
dispersion, dissipation and the distance of wave propagation have on the wave profile. To
simplify the analysis, we will consider only solutions at x =2wN where N is an arbitrary
positive integer.
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Fig. I. Geometry of the viscoelastic layered composite.

It should be pointed out that a similar problem was studied by Sve [1] for two special
viscoelastic materials. The imaginary part of the wave number for the special materials is
assumed to be proportional to the absolute value of the frequency or proportional to the square
of the frequency. Hegemier[3] obtained asymptotic solutions for elastic composites as well as
viscoelastic composites. However, his solutions differ from that obtained here and in [2]. A
discussion on the differences will be given later.

2. SOLUTION FOR x'=ZwN
The equations of motion and the continuity of the displacement are given by

a(J'j .
(i::= 1,2) (1)ax= PjVj,

aVj .
(j::= 1,2) (2)-::=f;'

ax "

where (J'j, ej, Vj, Pi (i::= 1,2) are the normal stress, normal strain, normal particle velocity and
mass density, respectivly. A dot stands for differentiation with respect to time t. The initial and
boundary conditions are

(j::= 1,2) (3)

(J'j(OO, t)::= 0 (i::= 1,2) (4)

(J'I(O, t)::= H(t) (5)

where H(t) is the Heaviside unit step function. The relation between (J'j and Ej is written in the

form of Stieltjes integral

(J'j(X, t)::= (I g;(t - t') de;(t')Jo- (i::= 1,2) (6)

where gj(t) are the relaxation functions of the viscoelastic layers.
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Let i(p) be the Laplace transform of f(t):

icp) = ('" f(t) e-pt dt.Jo-

Equations OH6) then reduce to

~2-

'" (Ti _ kZ ax2 - j(Ti

where

k, = VP;P/gi'

(7)

(8)

(9)

(0)

Since k, is periodic in x with periodicity 2a1, by using the Flaquet theory [4] the solution for
x = 2a1N where N is an arbitrary positive integer is

(1)

where K is the characteristic exponent given by (see [2,5,6])

(2)

(13)

Therefore, the solution for x =2a1N is

(14)

For a large x, the main contribution to the Bromwich contour integral of eqn (14) appears to
come from the values of integrand near p = O. Hence we must study the behavior of I( near
p =0 before we evaluate eqn (14) for large x.

3. BEHAVIOR OF "NEAR p ..o
For most viscoelastic materials, the relaxation function 1,(/), (i = 1,2) is a monotonically

decreasing function of t. Let I,,,,, be the value of 'I(t) at t = 00. For most viscoelastic solids Ii'" is
non-zero. If 1(P) is the Laplace transform of 1,(1),

pg,(p) = p L"" I,(t)e-Pl dl

=Ii"" +PL"" (gi(t)- 11",,]e-Pl dt.

(IS)
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For small p, e- pt = 1- pt +... Hence
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where

(16)

(17)

It is seen that a~i'" is the area between the curve gj(t) and the horizontal line gi(t) = gj", while Tj

is the distance of the centroid of this area from t = O. According to [7], ai provides a measure of
the "viscosity" of the viscoelastic materials. An example of relaxation function which yields
eqn (16) is the standard linear viscoelastic solid

(18)

Using eqns. (16), (0) and (13), the right-hand side of eqn (2) can be expanded into power
series in p. If we assume that, for small p, K can be expressed as

(19)

and use of this to expand the left-hand side of eqn (2) into power series in p, we can determine
the constants C"', v and f3 by comparing the coefficients of same powers of p on both sides of
eqn (12). After a lengthy algebra, one obtains

(22)

where

(23)

We see that p and g.., are, respectively, the effective mass density and the effe(:tive equilibrium
modulus of the composite.

When both layers are elastic, aj = 0 and hence v =O. Moreover, only the first term of f3
remains and f3 2 O. Notice that the first term of f3 is proportional to the difference in the
impedances of the two layers and becomes zero when the difference in the impedances is
zero. Since the dispersive nature of the composite comes from the impedance mismatch, the
first term of f3 is responsible (or the oscillatory nature of the stress response.

When one or both of the layers are viscoelastic, v is positive and non-zero while f3 can be
positive, negative or zero. Not only is v responsible for the dissipative nature of the stress
response, the second part of f3 is also responsible for the dissipation.

The case when both v and f3 vanish will not be considered here.

4. ASYMPTOTIC SOLUTIONS
From eqns (9) and (4), we have

(T\(X, t) = -2
1

.J .! exp {(t _.!.) p +-2
x (vp2 +i f3p2+...) dp.

1T1 Rr JJ c", c'"
(24)
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We will assume that x is sufficiently large that the terms denoted by the dots can be ignored.
We will also assume that {3:;i O. The case {3 =0 will be discussed later. Let

_(!lm)113b- .
2c""

(25)

Equation (24) then takes the form

(26)

where the subscript I of (J' has been omitted and the +sign is for {J >0 and - sign for {J < O.
By taking the Bromwich contour L1 as shown in Fig. 2. it is not difficult to show that

(27)

We will therefore consider only the case 13 > 0 and hence the integral

Using the identity

1 I l'-e't' =-+ est'ds
p p 0

the integral in eqn (28) can be divided into two parts:

Fig. 2. Bromwich contours for eqns (28). (31) and (32).

(28)

(29)

(30)

(31)

(32)
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Notice that 11:= U('Y, 0) and hence is the magnitude of stress at t:= x{c",. By taking the
Bromwich contour L 2, of Fig. 2, one obtains

(33)

where f(x) is the Gamma function. If 'Y is very large, we take the Bromwich contour L 1 and
obtain

I 1 1 lC< 1 _,2 . (8 -3) dI := - - - - e sm - r r
2 'IT 0 r 3

(34)

where

We now turn to the integral [2' By replacing the variable p by

p = z- 'Y.

eqn (32) can be written as

or

where the Airy function is defined as [8]

Ai(s) =~J e-sz +$z3 dz
211'1 ~

=~rcos (sr+!r3) dr.

(35)

(36)

(37)

(38)

(39)

Two extreme cases of 'Y =0 and 'Y =00 have been studied in the literature. Before we evaluate
u for arbitrary 'Y, we will obtain these two extreme cases from eqn (30).

(1) 'Y = 0
For elastic composites, I) =0 and hence 'Y =O. Equations (30), (33) and (38) then yield

1 r
0'(0..1') = 3+Jo Ai(- s) ds (40)

This is precisely the asymptotic solution obtained in [1,21. The stress 0' is an oscillatory function
of 'T (see Fig. 3).

(2) 'Y = 00
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Fig. 3. Asymptotic solution for 0S 'Y S I.

For viscoelastic composites, v¢ 0 and (J of eqn (24) mayor may not be zero. In [2) the term
containing {J was ignored. This is equivalent to assuming that (J "" 0 and hence 1 = 00. For a very
large 1, the Airy function has the expression(8):

A '( ) - I I -isln
IS = d-:me .

2v 7T S

Use of this expression in eqn (38) results in

12:i!-I-f1'e-s2
/t"'Y)d (...L) =!erf (1'*)

2v:i 0 vr 2 2

where

b*=bvr.Y"" Ixv
I V2c,,:

(43)
2 fiterf (x) =v:i 0 e-·

2
ds

Therefore when {J =0, (i.e. 'Y = 00 or 8 =0), eqns (34), (42) and (30) yield the following
asymptotic solution obtained in [1,2];

0" =!{I +erf (1'*/2)}

The stress 0" is a monotonically increasing function of 1'*, Fig. 4,

(44)
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Fig. 4. Asymptotic solution for I S 'Y S ce.
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5. NUMERICAL RESULTS AND DISCUSSION

For an arbitrary y, the stress ()" as a function of r may be obtained from eqn (30) where II is given
by eqn (33) or (34) and /2 is given by eqn (38). Since both II and /2 require a numerical integration. it
might be simpler to evaluate ()" directly from eqn (28). If we take L2 of Fig. 2 as the Bromwich
contour, eqn (28) reduces to

(45)

For the contour LJ, we have

where r* and 8 are defined in eqns (43) and (35). Notice that

(46)

,,= r* when y=8=1. (47)

Notice also that because ofthe factor 0/') e-,2 in the integrand of eqn (46), the absolute value ofthe
integrand diminishes rapidly as, increases. For instance, at r:::: 2, (1/r) e-,2 == 9 x 10-3 and at r =: 3,
(1/,) e-r2 == 4x 10-s•Therefore, the infinite integral can be replaced by an integral of finite interval
say O::s; , ::s; 3. A similar argument applies to the integral in eqn (45).

Equation (45) is used to calculate ()" for y =0,0.1, OJ, 0.6 and 1.0. The results are shown in Fig. 3.
Equation (46) is used to calculate ()" for y =1and 'Y = 00, (i.e. 8 =:: 1and 8 =0), Fig. 4. We see that the
stress response differs very little for y = 1and l' = 00.

The example of stress response at the 30th layer considered in [2] has a negative value of {3 and
l' =0.58. On the other hand, the example considered in ([3], p 100) has a positive value of {3 and
y = 0.68.

For a given viscoelastic composite, v and (3 are known and fixed. y then depends on x and
increases as x increases. We see from Fig. 3that the oscillatory nature of the stress diminishes as 'Y
increases. Since for y ~ 1 the oscillation is practically non-existence. we may say that for

(48)

the stress response is monotonic.
The asymptotic solution for viscoelastic composite derived in [3] is different from eqn (24).

Using the notations ofeqns (20H22), the asymptotic solution derived in [3] is based on the equation

Iii { lJX xp ( R )-112}(}"(X,t)=-. -exp tp+_p2_- 1+~p2 dp.
217'1 Br P 2e", e" 3

(49)

If we expand the last term in the exponent into a power series in p and ignore the terms of order
higher than pl, eqn (49) is identical to eqn (24). We are able to verify that v in [3] is identical to the
one obtained in eqn (21). However, {3 in [3] appears to be different from the expression in eqn (22).

CONCLUSION
The parameter y defined in eqn (25) consists of the variables v, {3 and x. The dissipative

nature of the viscoelastic material is represented by v and a part of {3, while the remaining .part
of f3 represents the dispersive nature of the composite. The distance traveled by the wave is
represented by x. Thus 'Y contains the inftuences on the wave profile due to dissipation,
dispersion and the distance traveled by the wave. With 'Y determined from eqn (25), Figs. 3 and
4 provide the wave response.
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